
lnt. J, Solids Structures. Vol. 11. pp, 347-355, Pergamon Press 1975, Printed in Great Britain

COMPUTATION OF INCREMENTAL TORSIONAL
PLASTIC WAVES WITH RATE-DEPENDENT MODELS

A. K. BANERJEEt

Northrop Technical Services, Inc. P.O. Box 1484, Huntsville, Alabama 35807, U.S.A.

and

L. E. MALVERN:j:

Centerfor Dynamic Plasticity, Department of Engineering Sciences, 231 Aero Building, University of Florida,
Gainesville, Florida 32611, U,S.A,

(Received 1April 1974; revised 22 July 1974)

Abstract-A theoretical analysis of the experimental data of Yew and Richardson on incremental plastic waves
in copper is given. Three different strain-rate-dependent constitutive models are considered, and each is
integrated by a different numerical scheme. Results show that the intermediate level strain data can be fairly
well explained by anyone of these models. Good match between the theory and the experiment has, however,
not been obtained for the very low and the large amplitude strains. Arate-independent solution is presented for
contrast, and it shows consistently poor agreement with the experiment.

INTRODUCTION

Yew and Richardson [1] published an experimental study of the strain-rate sensitivity of copper
and its effect on the velocity of propagation of shearing strain. Thin-walled tubes of copper were
loaded in torsion to eliminate the effects of radial inertia. Tests with prestressed specimens showed
that while large strains propagated with speeds given by a rate-independent theory, lower level
strains traveled faster than predicted by such a theory. It was concluded that this discrepancy must
be due to the strain-rate sensitivi,y of copper.

The purpose of the present paper has accordingly been to analyze these experimental data in the
light of a strain-rate-dependent theory of inelastic wave propagation. Three different nonlinear
constitutive models, of the types proposed earlier in the literature on dynamic plasticity, have been
examined. The attempt to choose the parameters in these constitutive models for a reasonable
match between the theory and the experiment gave rise to the mathematical problem of
convergence of the numerical solutions. The problem was solved by using more powerful
numerical methods as the situation warranted. Thus the Malvern [2] linear overstress model was
solved by Bianchi's [3] scheme, the Cristescu [4] model by the second-order Courant, Isaacson,
Rees scheme developed by Ranganath and Clifton [5], and Perzyna's [6] exponential overstress
version of Malvern's model by developing an integro-differential approach. Comparison of these
numerical solutions was made with the experimental data and with a rate-independent solution
based on a bilinear stress-strain curve. It was found that intermediate level strain data are fairly
well represented by anyone of the rate-dependent models, while the very low and large amplitude
strains are not well reproduced. The exponential overstress model was inferior to the other two
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rate-dependent models, at least with the parameter values used. The rate-independent solution, on
the other hand, gives consistently poor results.

BASIC EQU ATIONS

The basic equations of motion and compatibility are

aT av
ax P at (1)

(2)

where T and I' are the shear stress and strain (engineering definition) and v is the particle velocity in
the tangential direction. It may be noted that these equations are exact even for large strains.

CONSTITUTIVE EQUATIONS

The following three constitutive models are examined in turn.
(i) Linear overstress model, Malvern [2],

Here G is the shear modulus, k is the rate-sensitivity parameter and f( y) is the dynamic relaxation
boundary in the stress-strain plane.

(ii) Exponential overstress model, Perzyna[6J,

Here k and A represent the two rate-sensitivity parameters in this model.
(iii) Quasilinear model, Cristescu [4],

ay [I ] aT k- = -+ rb(r 1') -+- [T - f(y)].at G ' at G

(4)

(5)

Here the term rb(T, y) (dr/dt) accounts for any instantaneous inelastic response and was
introduced in the literature on purely phenomenological grounds (see, e.g. Ref. [7]). As such, the
procedure for determining a suitable form of this function is rather empirical. Thus Cristescu [4]
chose a simple function as a first approximation to the curve for instantaneous stress-strain
behavior, and subsequent adjustment was necessary for a good fit to the strain-time curve up to its
inflection point. The basic form chosen in the present investigation is the parabola T B(y + 1'1)112

where Band 1'1 are constants to be determined. The instantaneous response curve is obtained from
Eq. (5) as

(6)
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and its slope is set equal to that of the parabola chosen. Thus
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(7)

Band 'Y' are evaluated by requiring that the initial slope is the elastic modulus and that the
instantaneous stress-strain curve passes through the initial yield point. Eq. (7) thus gives the first
approximation as

(8)

For subsequent adjustment for a good fit to the strain-time data, an additional parameter a was
introduced multiplying 'Y - 'Yo in Eq. (8), which then takes the form given in Eq. (9). The value of
a = 1500 was finally used in the computation.

(9)

Eq. (9) would correspond to an instantaneous curve

relating incremental stress IlT and incremental strain 1l'Y. It is emphasized that there is no intention
to imply that any finite-amplitude instantaneous loading would actually follow this curve. The
reciprocal of 1> +O/G) is the slope of the instantaneous curve. According to Eq. (9) the slope
would approach zero for large values of 'Y - 'Yo, which is not reasonable; hence the slope given by
Eq. (9) should be regarded as at best the leading term (dominant for small 'Y - 'Yo) of a
representation of [1> +O/GW'.

RELAXATION BOUNDARY AND ELASTIC MODULUS

The quasistatic stress-strain curve given by Yew and Richardson for cold-worked copper was
essentially linear in the plastic region covered by the experiments. For the calculations, a linear
dynamic relaxation boundary was assumed of the form

T - To = Gt ('Y - 'Yo) (0)

where (To, 'Yo) is the initial stress-strain point and Gt is the tangent modulus. For the computations
the numerical value Gt = 66,000 psi was used; this is consistent with the value of finite-amplitude
plastic wave speed Cp = 8700 in./sec, estimated from the graphical data presented by Yew and
Richardson, and a density p = 8·71 x 1O~4Ib-sec2/in.4. The dynamic elastic modulus was taken as
G = 6 X 106 psi, corresponding to the reported elastic shear wave speed of 83,000 in./sec.

INTERIOR DIFFERENTIAL EQUATIONS

The general form

(1)
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reduces to Eqs. (3), (4) or (5) with appropriate choices of 4> and 1jJ. The interior differential equations
are

along the characteristics defined by

dr +- pc dv = - pc 2 1jJ dt (12)

(13)

BOUNDARY AND INITIAL CONDITIONS

Yew and Richardson [1] report strain-time data for three strain gage stations at 0·38, 1·50 and
2·75 in. from the impact end. The boundary condition for the numerical solutions was taken to be
the incremental strain-time record for the first strain gage (at 0·38 in.). The incremental
stress-strain behavior is independent of the initial point. with the linear dynamic relaxation
boundary of Eq. (10), for the linear and exponential overstress models. The function 4> given by
Eq. (9) contains the value of To only in the combination alro. Hence the same incremental
behavior for a different To would require a different a for the quasilinear model. The calculations
were made with To = 10,440 psi and 'Yo 0·01. The initial values were not given in [1], but the
incremental behavior presented here does not require those values.

NUMERICAL SCHEMES

(i) Linear overstress model-Diamond-shaped meshes were used. The algorithm was the same
as that given by Bianchi [3]. Because of the linear plastic stress strain function assumed, simple
elimination of variables is possible. Computation time was of the order of seconds.

(ii) Perzyna model-The presence of the exponential function in Eq. (4) caused the integration
scheme at the boundary to be very sensitive to any waviness of the numerical data that remained
after interpolation and smoothing. Also, solution of the interior differential equations written in
implicit difference form required uneconomically small step sizes when the parameters were
chosen to represent a material with only slight rate-sensitivity as in the present case. The
integro-differential approach discussed in the following has the advantage that, while the
integration operation takes care of any rough boundary data, the convergence process itself is very
much improved by a direct elimination of one of the variables.

Consider Eq. (4). For a fixed material point, i.e. constant x, this nonlinear ordinary differential
equation can be given a variation-of-parameter solution as

T = O('Y - 'Yo) + k(t - to) + Jl(t), (14)

where 'Yo is the strain at time to. Substituting Eq. (14) in Eq. (4) written as an ordinary differential
equation and solving the resulting differentia! equation gives

where To is the stress at to. With

(16)
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and

Eq. (14) is rewritten as

7 = G(y - 1'0)+ 70+ t/J.

On using Eq. (18) in Eq. (1) we obtain the following integro-differential equation
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(17)

(18)

(19)

where t/J is given by Eq. (17). The expression for (Bt/JIBx) contains within the integral sign the term
(By/Bx), but any discontinuous derivative that this may represent gets smoothed out upon
integration. Thus Eqs. (19) and (2) may be looked upon as a set of quasilinear hyperbolic partial
differential equations. The corresponding interior differential equations are

valid along the lines

dv::;:: C2 dy 1 at/J dx
PC2 Bx

(20)

(21)

The numerical integration of equations (20) is carried out in the characteristic field of Fig. 1(a),
where the associated mesh configurations are also indicated. To evaluate the quantity (Bt/JIBx),
the solution has to be known at the point M on the line parallel to the x-axis. The integral
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Fig.!. Characteristics field and mesh configurations used for (A) exponential overstress model. (B)
quasilinear model.
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occurring in the expression for I/J, Eq. (17), is evaluated by the trapezoidal rule for each x-station
considered. To prevent the integrand from exceeding the largest number that can be handled by
the computer, e t74 with the machine used, a recursive scheme of integration is developed (see
Banerjee [8]). Computations with a step size of 1·1422 /-Lsec and for a loading duration of 370 /-Lsec
required a machine time of 2·7 min on an IBM 360/65 computer.

(iii) Quasilinear Model-Computations for the quasilinear set of equations (1), (2), (5) were
done by the second-order Courant, Isaacson. Rees method developed by Ranganath and
Clifton [5]. One modification was found necessary in that a maximum of up to five additional
iterations on the second order solutions had to be used. A sketch of the characteristics field and
the mesh types involved is given in Fig. l(b). Details of the computations scheme, which required
using a "crossing routine." see Cristescu [9]. when successive iterations oscillated about the
relaxation boundarv. are given in Banerjee [8]. With a step size of 0·5711 JLsec, the computation
time was 7·6 min on an IBM 360/65 machine for an impact duration of 370 JL sec.

RESULTS

Figures 2-4 show the results of computations based on the linear overstress [2], exponential
overstress [6] and quasilinear [4] models respectively. In each figure the experimental data of
Yew and Richardson [1] and a rate-independent solution based on the bilinear quasistatic
stress-strain curve are also presented.

Figure 2 shows the results for the linear overstress model (Eq. 3). with k = 8·5 X 106 sec-I. It is
seen that the rate-dependent solution gives in general a better description of the experimental
response than the rate-independent solution. Incremental strain data below 0·04 per cent and
above 1·0 per cent are not matched by the solution presented.

Figure 3 shows the results based on the exponential overstress model Eq. (4), with k = 109 psi
sec-1 and A = 250 psi. Increasing k and/or decreasing A would give a solution showing less rate
effect and better agreement with the experiments. However. even for the present values of k and A,
the integral involved for evaluating I/J (Eq. 17) has to be broken down into thirteen parts, and a
solution showing less rate effect can only be obtained at the expense of making the program more
unwieldy. Even so, the present rate-dependent solution is closer to the experimental data than the
rate-independent solution.

Solution for the quasilinear model, Eq. (5), is presented in Fig. 4. The overall agreement
between this rate-dependent solution and the experimental response is probably the best among the
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Fig. 2. Incremental strain-time plots for the linear overstress model at O'38, 1·50 and 2·75 in. from impact end.
First curve (0'38 in.) is taken as input for the calculations.
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Fig. 3. Incremental strain-time plots for the exponential overstress model at 0·38, 1·50 and 2·75 in. from
impact end. First curve (0·38 in.) is taken as input for the calculations.
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Fig.4. Incremental strain-time plots for the quasilinear model at 0·38.1·50 and 2·75 in. from impact end. First
curve (0,38 in.) is taken as input for the calculations.

three models considered. It was seen that changing a in Eq. (9) has the effect of controlling the
strain-time curve below the inflection point, while changing k in Eq. (5) controls the "lift" of the
curve above the inflection. Similar observations were also made by Cristescu[4].

Even better agreement with the experimental results could probably have been obtained by
further adjustment of the parameters of the quasilinear model. Further refinement was, however,
not considered worthwhile until more experimental data is available for a variety of incremental
loadings of the same material.

Figure 5 shows a stress-time plot at the boundary for the three constitutive models, together
with the rate-independent solution, i.e. the quasistatic stress-strain values. It is seen that all the
three rate-dependent solutions show a slight overstress initially when the strain-rate is high, but the
relaxation boundary-quasistatic stress-strain relation as assumed in this case-is reached
whenever the strain-rate becomes very small.

COMPARISON OF THE THREE MODELS AND NUMERICAL METHODS

The rate-independent solution plotted in Figs. 2-4 shows that the smaller strains propagated
faster in the experiment than predicted by this theory, while the situation is reversed for large
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Fig. 5. Incremental stres<,-time plot at the boundary.

strains. This is the typical indication of strain-rate effects, as observed by Malvern [2]. Thus it is no
surprise that the three models showed better agreement with the experiment than the
rate-independent solution. The difference between the three rate-dependent solutions is evidently
a consequence of the different constitutive models. The quasilinear model of Cristescu [4] seems to
be better suited for describing the rate effects demonstrated in the experiments. One interesting
thing to note is that the speed of propagation of any given level of strain is not well predicted by any
one of the rate-dependent or rate-independent theories considered.

In terms of the numerical methods used, Bianchi's [3] algorithm seems to be the most
appropriate to apply for a linear constitutive equation like the Malvern model for a linear relaxation
boundary function. The second order accurate difference method of Ranganath and Clifton [5],
when used with provisions for more iterations if required, seems to be a powerful tool for the more
difficult quasilinear system.

The integro-differential scheme presented in this paper has the twin advantages of superior
stability together with a suitability for handling rough boundary data. To give a relative estimate of
stability, a Gauss-Seidel iteration on the implicit difference form of the characteristic relations for
the Perzyna[6] model could admit parametric values up to about k = 3 x ro8 psi sec-I and
1/A = 0·001 psi-I for a step size of 0·5711 /-L sec-while the integro-differential method permitted
the use of values such as k = ro9 psi sec-I and IIA = 0·004 psi-I for a step size twice as large.

CONCLUSIONS

(I) Three different rate-dependent constitutive equations were used to describe the
incremental strain data in torsional impact obtained by Yew and Richardson [1]. Reasonable
agreement was achieved with each of these models at the intermediate level strains but not at high
and low levels. The quasilinear model gave somewhat better agreement than the others, and all
three rate-dependent models gave better overall agreement than did a rate-independent solution
based on the quasistatic stress-strain behavior.

m An integro-differential method of solution was presented for semilinear partial differential
equations. Besides being inherently ahle to handle non-smooth boundary data, the method has
stability characteristics superior to that of Gauss-Seidel type iterations. For quasi linear systems
the method of Ranganath and Clifton [5] proved its usefulness.
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(3) Much more experimental data is needed to test the usefulness of these and other
constitutive hypotheses. The same material should be tested with different incremental loadings
after varying amounts of prestrain, and alternative strain recording techniques should be used.
There is some evidence that strain gages lag behind as they approach the maximum in a dynamic
plastic strain pulse; see, for example, Sharpe [10]. Perhaps optical methods (Bell [11] or
Sharpe [12]) could be used to advantage to compare with the strain-gage results. It seems unlikely,
however, that the large differences between the experiment and the theories can all be attributed to
lag in the strain gage response.
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